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TABLE I Non-stoichiome!ry in Cu20~+ 7 

7 X 104 

Po2 (arm) [41 [5] [61 This work 

900 ~ C 1000 ~ C 900 ~ C 1000 ~ C 900 ~ C 1000 ~ C 900 ~ C 1000 ~ C 

4.3 X 10 -~ - 9.1 - 11.4 7.3 13.1 .- 7.4 
8.5 X 10 -3 2.8 5.9 5.4 8.3 4.6 8.7 2.3 4.9 
9.6 X 10 -4 1.6 3.2 3.0 5.2 2.8 5.1 1.3 2.9 

1 X 10 -5 . . . . .  8.77 --55 0.43 0.92 

D1/4 change of  the sample plotted versus a - o ~  depen- 

dence at different temperatures and at pressures 

ranging from 5 • 10 -2 to 5 • 10-6arm. From 

Fig. 2 it may be seen that the linear relationship 

extends below 10-3arm pressure, at which for a 

temperature around 1000 ~ C a change o f  the type 

of  non-stoichiometry should occur [6].  This 

would indicate that the copper vacancy defect 

model is valid over the whole range of  oxygen 

partial pressure considered. 

The plot of  log K versus l I T  represented in Fig. 

4 gives values of  A and E of  Equation 3: A = 11.9 

and E = 22 .5kca lmol  -I. Using these values the 

deviation from stoichiometry in Cu201+~ has been 

calculated for different partial pressures of  oxygen 

and compared to values derived from results and 

equations in [4 -6 ]  in Table I. 

In conclusion it seems that the predominant 

ionic defect in Cu20 at high temperature is l~cu 

down to oxygen pressures o f  at least 5 x 10 -6 

atm, the enthalpy of  formation of  copper vacan- 

cies with respect to oxygen gas at 1 arm being 

22.4 kcal mol -a. 
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The effect o f  grain size on the occurrence 
o f  cleavage fatigue failure in 316 stainless 
steel 

Highly reflective mirror like cleavage facets occur 

on the fatigue fracture surfaces of  austenitic type 

316 stainless steel [ 1 ].  The influence of  grain size 

386 

on this failure mode has been examined for the 

grain sizes of  3, 20 and 37 grains/ram. Tests at 

140Hz used an Amsler vibrophore and standard 

compact tension [2] specimens to produce crack 

propagation in the stress intensity range AK = 5 -- 
30 MN m -3/2 at a stress ratio o f R  = 0.33. 

A cleavage facet is shown for the 3 grains/ram 
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TABLE I 

Grain size Stress intensity for peak cleavage 

(grains/mm) Observed Calculated 

37 8 6.8 
20 11 9.3 

3 18 24 

Figure 1 Cleavage facet, X 44. 

material in Fig. 1. In Fig. 2, % cleavage is plot ted 
against AK. The amount  of  cleavage increases and 
a peak occurs at higher zSd( values with increase in 
grain size. Calculation of  the stress intensity factor 
range to give an alternating plastic zone size equal 
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Figure 2 Cleavage fracture as a function of grain size and 
stress intensity 

tO the grain diameter predicted the approximate 
values of  zSd~ at peak % cleavage as in Table I. 

Metallographic observations show that the 
cleavage is associated with reduced plastic defor- 
mation in certain grains as evidenced by the 
reduction in slip lines. The cleavage is also con- 
sidered to be part of  the fatigue process and not 
isolated areas of  fast fracture which occurs in 
certain ferritic steels [3] .  Fig. 3 shows a cleavage 
facet in which the crack front has been stopped 
approximately halfway across and marked by a 
surface "blueing" heat-treatment before testing 
has continued. 

The results shown in Fig. 2 were all produced in 
laboratory air at ambient temperatures. The occur- 
rence of  cleavage was also observed at 500 ~ C in 
air [1].  Fatigue crack propagation specimens 
tested by  Priddle and Wiltshire [4] in sodium at 
500~ were examined but the cleavage failure 

mode was not  observed. Fig. 4 shows scanning 

Figure 3 Facet with crack front marked, X 800. 
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IHgure 4 Fracture surfaces of 316 steel, (a) in air at ambient temperature. Two facets are visible; (b) in sodium at 
500 ~ C. Facets are not observed. X 480. 

electron microscope photographs of  the 316 steel 
fracture surfaces from room temperature and tests 
at 500 ~ C in sodium. 

It is thought that  cleavage in f c c  materials 
should occur on the {1 1 1 } planes and this has 
been observed in stage I fatigue in nickel and alu- 
minium alloys [5].  The faceted fracture areas in 
the 316 steel of  3 grains/mm size have been exam- 
ined by  X-ray diffraction which has indicated that  
cleavage does in fact occur on the {1 1 1 } plane. 
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A specimen for evaluating the area of  
SACPs 

Most commercial scanning electron microscopes 
now offer the capabili ty of  obtaining selected-area 
channelling patterns,  SACPs. Different electron op- 
tical techniques are used to obtain the SACPs and 
on the various machines it is difficult to evaluate 
the minimum area from which the channelling pat- 
tern is being generated. In this paper we discuss 
the preparat ion of  an A1-Ge sample which has 
proven to be very effective in evaluating the mini- 
mum area of  SACPs. 

An alloy of  A l - 6 0 w t %  Ge is prepared by 
melting the elements in a 1 in. diameter graphite 
crucible under an inert atmosphere and then fur- 

388 

Figure 1 Ge particles in the central region of the ingot. 
Optical micrograph, • 60. 
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